
DiCE: DISTRIBUTED COLLABORATIVE
COMPUTING AT THE EDGE
(HYRAX PROJECT – DISTRIBUTED QUEUE)

RÚBEN ANDRÉ BARREIRO – Nº. 42648

MESTRADO INTEGRADO DE ENGENHARIA INFORMÁTICA

FACULDADE DE CIÊNCIAS E TECNOLOGIA DA UNIVERSIDADE NOVA DE LISBOA

INTRODUCTION

• The Hyrax project it’s been inserted in the context of Edge Computing and Mobile Devices’

Crowdsourcing;

• This project it’s been developed together by Faculdade de Ciências e Tecnologia da Universidade

Nova de Lisboa, Faculdade de Ciências da Universidade do Porto, Carnegie Mellon University;

• This project, also have, some Academic, Industrial and Funding supports;

• The Distributed Queue of the Hyrax project was developed by some members of NOVALINCS

team, including professors, BSc students, MSc students and PhD students, team in which I was

inserted;

MOTIVATIONAL EXAMPLE (THE WEDDING) (1)
- WHAT’S THE PROBLEM?

• For example, in a Wedding Party, there are a few guests’ Devices that have an app

to do facial recognition about the photos that are being taken in the event;

• That same few Devices doing the facial recognition of the photos are making and

distributing the computation in a small network range or neighborhood;

• The Devices of the guests that want to find the photos of the its owners during the

Wedding Party event, send computing requests by broadcast to the guests’ Devices

that are making the facial recognition;

• The problem it’s that only the Devices that are doing the facial recognition of the

photos produce all the computation work, while the other Devices are just consuming

computation work;

MOTIVATIONAL EXAMPLE (THE WEDDING) (2)
- WHAT’S THE SOLUTION?

• If was possible, the overall system would have a better performance, if all the

Devices in the range/network can produce work, instead of, only the Devices

that are doing the facial recognition and identifying the people in the photos;

• Here, it was adopted a most optimistic and relaxed architecture, in opposite

to, the common Master/Slave or Centralized Cloud System architectures using

locks and exclusive accesses;

• Thus, all Devices could consume and produce work, working together in the

range/network, in a collaborative way, where all the Devices produce and

consume work/computation;

MOTIVATIONAL EXAMPLE (THE WEDDING) (2)
- WHAT’S THE SOLUTION?
• This approach it’s, mostly appropriated, to hand-held Devices, in a volatile environment, with a constant entrance and

exit of Devices and it’s never known by any Device which other specific Devices are in the range/network or not;

• So, the main idea, is that all the Devices could have a data structure instantiated and replicated by every single one

of them, to keep and distribute computation requests, most specifically a distributed queue;

• In this approach, it’s assumed that:

• The Elements/Tasks are idempotents and commutative;

• The Devices’ clocks are synchronized;

• The communication among the Devices are made by Broadcast/Hops;

DISTRIBUTED QUEUE SYSTEM ARCHITECTURE

• The Distributed Queue System Architecture it’s composed by:

DISTRIBUTED QUEUE SYSTEM ARCHITECTURE

• The Distributed Queue System Architecture it’s composed by:

DISTRIBUTED QUEUE SYSTEM ARCHITECTURE

• The Distributed Queue System Architecture it’s composed by:

DISTRIBUTED QUEUE SYSTEM ARCHITECTURE

• The Distributed Queue System Architecture it’s composed by:

DISTRIBUTED QUEUE SYSTEM ARCHITECTURE

• The Distributed Queue System Architecture it’s composed by:

ENQUEUE(TƟ, TƟ_PRIORITY) OPERATION (1)

• The ENQUEUE(Tɵ, Tɵ_Priority) operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRITION:

ENQUEUE(TƟ, TƟ_PRIORITY) OPERATION (1)

• The ENQUEUE(Tɵ, Tɵ_Priority) operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRITION:

ENQUEUE(TƟ, TƟ_PRIORITY) OPERATION (1)

• The ENQUEUE(Tɵ, Tɵ_Priority) operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRITION:

1) Enqueue (Tɵ, Tɵ_Priority)

ENQUEUE(TƟ, TƟ_PRIORITY) OPERATION (1)

• The ENQUEUE(Tɵ, Tɵ_Priority) operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRITION:

1) Enqueue (Tɵ, Tɵ_Priority)

2) New T_Entryɵ

ENQUEUE(TƟ, TƟ_PRIORITY) OPERATION (1)

• The ENQUEUE(Tɵ, Tɵ_Priority) operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRITION:

1) Enqueue (Tɵ, Tɵ_Priority)

2) New T_Entryɵ

ENQUEUE(TƟ, TƟ_PRIORITY) OPERATION (1)

• The ENQUEUE(Tɵ, Tɵ_Priority) operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRITION:

1) Enqueue (Tɵ, Tɵ_Priority)

2) New T_Entryɵ

3) Put in Global Map

ENQUEUE(TƟ, TƟ_PRIORITY) OPERATION (1)

• The ENQUEUE(Tɵ, Tɵ_Priority) operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRITION:

1) Enqueue (Tɵ, Tɵ_Priority)

2) New T_Entryɵ

3) Put in Global Map

ENQUEUE(TƟ, TƟ_PRIORITY) OPERATION (1)

• The ENQUEUE(Tɵ, Tɵ_Priority) operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRITION:

1) Enqueue (Tɵ, Tɵ_Priority)

2) New T_Entryɵ

3) Put in Global Map

4) Put in Running Queue

ENQUEUE(TƟ, TƟ_PRIORITY) OPERATION (1)

• The ENQUEUE(Tɵ, Tɵ_Priority) operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRITION:

1) Enqueue (Tɵ, Tɵ_Priority)

2) New T_Entryɵ

3) Put in Global Map

4) Put in Running Queue

ENQUEUE(TƟ, TƟ_PRIORITY) OPERATION (2)

• The ENQUEUE(Tɵ, Tɵ_Priority) operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRITION:

ENQUEUE(TƟ, TƟ_PRIORITY) OPERATION (2)

• The ENQUEUE(Tɵ, Tɵ_Priority) operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRITION:

ENQUEUE(TƟ, TƟ_PRIORITY) OPERATION (2)

• The ENQUEUE(Tɵ, Tɵ_Priority) operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRITION:

5) Broadcast/Hop

Enqueue message

(Tɵ, Tɵ_Priority,

Node A.Address,

Tɵ_Enqueue_Timestamp)

ENQUEUE(TƟ, TƟ_PRIORITY) OPERATION (2)

• The ENQUEUE(Tɵ, Tɵ_Priority) operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRITION:

5) Broadcast/Hop

Enqueue message

(Tɵ, Tɵ_Priority,

Node A.Address,

Tɵ_Enqueue_Timestamp)

6) All Nodes that received

the ENQUEUE message,

do the same process

locally (Steps 3)

and 4)), without sending

Broadcast/Hop

ENQUEUE messages

ENQUEUE(TƟ, TƟ_PRIORITY) OPERATION (2)

• The ENQUEUE(Tɵ, Tɵ_Priority) operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRITION:

5) Broadcast/Hop

Enqueue message

(Tɵ, Tɵ_Priority,

Node A.Address,

Tɵ_Enqueue_Timestamp)

6) All Nodes that received

the ENQUEUE message,

do the same process

locally (Steps 3)

and 4)), without sending

Broadcast/Hop

ENQUEUE messages

TRYDEQUEUE() OPERATION (1)

• The TRYDEQUEUE() operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

TRYDEQUEUE() OPERATION (1)

• The TRYDEQUEUE() operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

TRYDEQUEUE() OPERATION (1)

• The TRYDEQUEUE() operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

1) TryDequeue()

TRYDEQUEUE() OPERATION (1)

• The TRYDEQUEUE() operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

1) TryDequeue()

2) T_EntryA =

RUN_QUEUE.get_Head()

TRYDEQUEUE() OPERATION (1)

• The TRYDEQUEUE() operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

1) TryDequeue()

2) T_EntryA =

RUN_QUEUE.get_Head()

TRYDEQUEUE() OPERATION (2)

• The TRYDEQUEUE() operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

TRYDEQUEUE() OPERATION (2)

• The TRYDEQUEUE() operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

TRYDEQUEUE() OPERATION (2)

• The TRYDEQUEUE() operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

3) Broadcast/Hop TRYDEQUEUE

message (Current_Time, TA.ID,

TA.Num_Executions,

Node A.Address,

Node A.Rank,

Node A.Battery_Level)

TRYDEQUEUE() OPERATION (2)

• The TRYDEQUEUE() operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

3) Broadcast/Hop TRYDEQUEUE

message (Current_Time, TA.ID,

TA.Num_Executions,

Node A.Address,

Node A.Rank,

Node A.Battery_Level)

4) Wait T time / During the T

time, some Nodes also can

send Broadcast/Hop

TRYDEQUEUE messages

(*) – T varies accordingly to the time that Broadcast/Hop message takes to propagate in the network/range

TRYDEQUEUE() OPERATION (2)

• The TRYDEQUEUE() operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

3) Broadcast/Hop TRYDEQUEUE

message (Current_Time, TA.ID,

TA.Num_Executions,

Node A.Address,

Node A.Rank,

Node A.Battery_Level)

4) Wait T time / During the T

time, some Nodes also can

send Broadcast/Hop

TRYDEQUEUE messages

5) Update the T_EntryA

(T_EntryA.State = RUNNING)

(*) – T varies accordingly to the time that Broadcast/Hop message takes to propagate in the network/range

TRYDEQUEUE() OPERATION (2)

• The TRYDEQUEUE() operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

3) Broadcast/Hop TRYDEQUEUE

message (Current_Time, TA.ID,

TA.Num_Executions,

Node A.Address,

Node A.Rank,

Node A.Battery_Level)

4) Wait T time / During the T

time, some Nodes also can

send Broadcast/Hop

TRYDEQUEUE messages

5) Update the T_EntryA

(T_EntryA.State = RUNNING)

(*) – T varies accordingly to the time that Broadcast/Hop message takes to propagate in the network/range

TRYDEQUEUE() OPERATION (3)

• The TRYDEQUEUE() operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

TRYDEQUEUE() OPERATION (3)

• The TRYDEQUEUE() operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

TRYDEQUEUE() OPERATION (3)

• The TRYDEQUEUE() operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

6) An ordered list of

TryDequeue_Requests

it’s generated to determine

which Node will execute TA

TRYDEQUEUE() OPERATION (3)

• The TRYDEQUEUE() operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

6) An ordered list of

TryDequeue_Requests

it’s generated to determine

which Node will execute TA

7) TDR1.owner = Node A /

TDR1.owner ≠ Node A

TRYDEQUEUE() OPERATION (3)

• The TRYDEQUEUE() operation of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

6) An ordered list of

TryDequeue_Requests

it’s generated to determine

which Node will execute TA

7) TDR1.owner = Node A /

TDR1.owner ≠ Node A

8) Start executing TA… /

Repeat, locally, all the

operation from the beginning

(from the Step 1))

TRYDEQUEUE’S TIME WINDOW (1)

• Situation 1) – TRYDEQUEUE Contest with only 1 Device:

STEPS/OPERATION

DESCRIPTION:

TRYDEQUEUE’S TIME WINDOW (1)

• Situation 1) – TRYDEQUEUE Contest with only 1 Device:

STEPS/OPERATION

DESCRIPTION:

1) The Device 1 Broadcast/Hop

TRYDEQUEUE message and

starts a T time window to

receive another TRYDEQUEUE

messages

(*) – T varies accordingly to the time that Broadcast/Hop message takes to propagate in the network/range

TRYDEQUEUE’S TIME WINDOW (1)

• Situation 1) – TRYDEQUEUE Contest with only 1 Device:

STEPS/OPERATION

DESCRIPTION:

1) The Device 1 Broadcast/Hop

TRYDEQUEUE message and

starts a T time window to

receive another TRYDEQUEUE

messages

2) As the Device 1 was the only

one to try to dequeue T1, it will

assume its execution

(*) – T varies accordingly to the time that Broadcast/Hop message takes to propagate in the network/range

TRYDEQUEUE’S TIME WINDOW (1)

• Situation 1) – TRYDEQUEUE Contest with only 1 Device:

STEPS/OPERATION

DESCRIPTION:

1) The Device 1 Broadcast/Hop

TRYDEQUEUE message and

starts a T time window to

receive another TRYDEQUEUE

messages

2) As the Device 1 was the only

one to try to dequeue T1, it will

assume its execution

(*) – T varies accordingly to the time that Broadcast/Hop message takes to propagate in the network/range

TRYDEQUEUE’S TIME WINDOW (1)

• Situation 1) – TRYDEQUEUE Contest with only 1 Device:

STEPS/OPERATION

DESCRIPTION:

1) The Device 1 Broadcast/Hop

TRYDEQUEUE message and

starts a T time window to

receive another TRYDEQUEUE

messages

2) As the Device 1 was the only

one to try to dequeue T1, it will

assume its execution

3) The Device 1 starts executing

T1 and periodically,

Broadcast/Hop RUNNING

messages

(*) – T varies accordingly to the time that Broadcast/Hop message takes to propagate in the network/range

TRYDEQUEUE’S TIME WINDOW (2)

• Situation 2) – TRYDEQUEUE Contest with 2 Devices:

STEPS/OPERATION

DESCRIPTION:

TRYDEQUEUE’S TIME WINDOW (2)

• Situation 2) – TRYDEQUEUE Contest with 2 Devices:

STEPS/OPERATION DESCRIPTION:

1) The Devices 1 and 2

Broadcast/Hop TRYDEQUEUE

messages and start a T time window

to receive another TRYDEQUEUE

messages

(*) – T varies accordingly to the time that Broadcast/Hop message takes to propagate in the network/range

TRYDEQUEUE’S TIME WINDOW (2)

• Situation 2) – TRYDEQUEUE Contest with 2 Devices:

STEPS/OPERATION DESCRIPTION:

1) The Devices 1 and 2

Broadcast/Hop TRYDEQUEUE

messages and start a T time window

to receive another TRYDEQUEUE

messages

2) Sort of the all TryDequeue Requests

for the Element/Task received

during the T time window

(TDR2 > TDR1)

(*) – T varies accordingly to the time that Broadcast/Hop message takes to propagate in the network/range

TRYDEQUEUE’S TIME WINDOW (2)

• Situation 2) – TRYDEQUEUE Contest with 2 Devices:

STEPS/OPERATION DESCRIPTION:

1) The Devices 1 and 2

Broadcast/Hop TRYDEQUEUE

messages and start a T time window

to receive another TRYDEQUEUE

messages

2) Sort of the all TryDequeue Requests

for the Element/Task received

during the T time window

(TDR2 > TDR1)

3) The Device 1 win the TryDequeue

Requests’ Contest, so will dequeue

the Element/Task in the 1st position

of the Running Queue and the

Device 2 (2nd classified) will

dequeue the Element/Task in the

2nd position

(*) – T varies accordingly to the time that Broadcast/Hop message takes to propagate in the network/range

TRYDEQUEUE’S TIME WINDOW (2)

• Situation 2) – TRYDEQUEUE Contest with 2 Devices:

STEPS/OPERATION DESCRIPTION:

1) The Devices 1 and 2

Broadcast/Hop TRYDEQUEUE

messages and start a T time window

to receive another TRYDEQUEUE

messages

2) Sort of the all TryDequeue Requests

for the Element/Task received

during the T time window

(TDR2 > TDR1)

3) The Device 1 win the TryDequeue

Requests’ Contest, so will dequeue

the Element/Task in the 1st position

of the Running Queue and the

Device 2 (2nd classified) will

dequeue the Element/Task in the

2nd position

(*) – T varies accordingly to the time that Broadcast/Hop message takes to propagate in the network/range

TRYDEQUEUE’S TIME WINDOW (2)

• Situation 2) – TRYDEQUEUE Contest with 2 Devices:

STEPS/OPERATION DESCRIPTION:

1) The Devices 1 and 2

Broadcast/Hop TRYDEQUEUE

messages and start a T time window

to receive another TRYDEQUEUE

messages

2) Sort of the all TryDequeue Requests

for the Element/Task received

during the T time window

(TDR2 > TDR1)

3) The Device 1 win the TryDequeue

Requests’ Contest, so will dequeue

the Element/Task in the 1st position

of the Running Queue and the

Device 2 (2nd classified) will

dequeue the Element/Task in the

2nd position

4) Device 1 starts executing T1 and

Device 2 starts executing T2. Both

Devices periodically Broadcast/Hop

RUNNING messages(*) – T varies accordingly to the time that Broadcast/Hop message takes to propagate in the network/range

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

(*) – T varies accordingly to the time that Broadcast/Hop message takes to propagate in the network/range

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

1) The Devices 1, 2 and 3

Broadcast/Hop TRYDEQUEUE

messages and start a T time window

to receive another TRYDEQUEUE

messages. But the Broadcast/Hop

TRYDEQUEUE messages sent by the

Device 2 was received outside of

the T time window started by the

Devices 1 and 3. So, in this step, it’s

only considered the TryDequeue

Requests for the Element/Task made

by the Devices 1 and 3

(*) – T varies accordingly to the time that Broadcast/Hop message takes to propagate in the network/range

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

1) The Devices 1, 2 and 3

Broadcast/Hop TRYDEQUEUE

messages and start a T time window

to receive another TRYDEQUEUE

messages. But the Broadcast/Hop

TRYDEQUEUE messages sent by the

Device 2 was received outside of

the T time window started by the

Devices 1 and 3. So, in this step, it’s

only considered the TryDequeue

Requests for the Element/Task made

by the Devices 1 and 3

2) Sort of the all TryDequeue Requests

for the Element/Task received

during the T time window

(TDR3 > TDR2)

(*) – T varies accordingly to the time that Broadcast/Hop message takes to propagate in the network/range

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

3) The Device 3 win the TryDequeue

Requests’ Contest, so will dequeue

the Element/Task in the 1st position

of the Running Queue and the

Device 1 (2nd classified) will

dequeue the Element/Task in the

2nd position

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

3) The Device 3 win the TryDequeue

Requests’ Contest, so will dequeue

the Element/Task in the 1st position

of the Running Queue and the

Device 1 (2nd classified) will

dequeue the Element/Task in the

2nd position

4) Device 3 starts executing T1 and

Device 1 starts executing T2. Both

Devices periodically Broadcast/Hop

RUNNING messages

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

5) During the execution of the

Element/Task T1 and T2 by the

Devices 3 and 1, respectively, was

received the TryDequeue Request

made by the Device 2 for the

Element/Task T1

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

5) During the execution of the

Element/Task T1 and T2 by the

Devices 3 and 1, respectively, was

received the TryDequeue Request

made by the Device 2 for the

Element/Task T1

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

6) Occurs a conflict for the Execution

Host of the Element/Task

T1 (and the following

Elements/Tasks, if it’s necessary).

In the beginning, it’s realized an

Execution Host Contest between the

Devices 2 and 3 for the execution of

the Element/Task T1, if the Device 2

don’t win the Execution Host Contest

for the Element/Task, will start

another Execution Host Contest for

the Element/Task T2 with its

Execution’s Host, and will repeat the

same process for the following

Elements/Tasks, until wins a

Execution Host Contest

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

7) Situation 1 (TDR1 > TDR3):

In this situation, the winner of the

Host Contest it’s the Device 2. So the

Execution’s Host of T1 changes. The

new Execution’s Host of T1 will be

the Device 2. The Device 3 stops the

execution of T1 and Device 2 starts

its execution. The Device 3 will try

dequeue another Element/Task

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

7) Situation 1 (TDR1 > TDR3):

In this situation, the winner of the

Host Contest it’s the Device 2. So the

Execution’s Host of T1 changes. The

new Execution’s Host of T1 will be

the Device 2. The Device 3 stops the

execution of T1 and Device 2 starts

its execution. The Device 3 will try

dequeue another Element/Task

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

7) Situation 2 (TDR3 > TDR1):

In this situation, the winner of the

Host Contest it’s the Device 3. So the

Execution’s Host of T1 remains the

same. The Execution’s Host of T1

continues to be the Device 3. The

Device 2 will start another

Execution’s Host Contest for the

Element/Task T2. As the Execution’s

Host of Element/Task T2 it’s the

Device 1, the Execution’s Host

Contest will be between the Devices

2 and 1

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

8) Situation 2.1 (TDR1 > TDR2):

In this situation, the winner of the

Host Contest it’s the Device 2. So the

Execution’s Host of T2 changes. The

new Execution’s Host of T2 will be

the Device 2. The Device 1 stops the

execution of T2 and Device 2 starts

its execution. The Device 1 will try

dequeue another Element/Task

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

8) Situation 2.1 (TDR1 > TDR2):

In this situation, the winner of the

Host Contest it’s the Device 2. So the

Execution’s Host of T2 changes. The

new Execution’s Host of T2 will be

the Device 2. The Device 1 stops the

execution of T2 and Device 2 starts

its execution. The Device 1 will try

dequeue another Element/Task

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

8) Situation 2.2 (TDR2 > TDR1):

In this situation, the winner of the

Host Contest it’s the Device 1. So the

Execution’s Host of T2 remains the

same. The Execution’s Host of T2

continues to be the Device 1. The

Device 2 will start another

Execution’s Host Contest for the

Element/Task T3

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

TRYDEQUEUE’S TIME WINDOW (3)

• Situation 3) – TRYDEQUEUE Contest with 3 Devices and 1 TRYDEQUEUE message outside of the T time Window:

STEPS/OPERATION DESCRIPTION:

9) Situation 2.2.1 (No Execution Host):

As Element/Task T3 don’t have any

Execution’s Host, the Device 2 will

dequeue it from the queue and

starts its execution

TASK’S EXECUTION PROCESS (1)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

TASK’S EXECUTION PROCESS (1)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

TASK’S EXECUTION PROCESS (1)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

1) Executing TA... /

Periodically Broadcast/Hop

RUNNING messages,

until the execution finishes

TASK’S EXECUTION PROCESS (1)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

1) Executing TA... /

Periodically Broadcast/Hop

RUNNING messages,

until the execution finishes

2) Update the timestamp of

the last RUNNING message

received, until receive a DONE

message

TASK’S EXECUTION PROCESS (1)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

1) Executing TA... /

Periodically Broadcast/Hop

RUNNING messages,

until the execution finishes

2) Update the timestamp of

the last RUNNING message

received, until receive a DONE

message

TASK’S EXECUTION PROCESS (2)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

TASK’S EXECUTION PROCESS (2)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

TASK’S EXECUTION PROCESS (2)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

3) Broadcast/Hop DONE

message

TASK’S EXECUTION PROCESS (2)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

3) Broadcast/Hop DONE

message

4) Remove the T_EntryA

TASK’S EXECUTION PROCESS (2)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

3) Broadcast/Hop DONE

message

4) Remove the T_EntryA

TASK’S EXECUTION PROCESS (2)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

3) Broadcast/Hop DONE

message

4) Remove the T_EntryA

5) Remove the RunA_Entry /

Remove the T_EntryA

TASK’S EXECUTION PROCESS (2)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

3) Broadcast/Hop DONE

message

4) Remove the T_EntryA

5) Remove the RunA_Entry /

Remove the T_EntryA

TASK’S EXECUTION PROCESS (2)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

3) Broadcast/Hop DONE

message

4) Remove the T_EntryA

5) Remove the RunA_Entry /

Remove the T_EntryA

6) New Finished_TA

TASK’S EXECUTION PROCESS (2)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

3) Broadcast/Hop DONE

message

4) Remove the T_EntryA

5) Remove the RunA_Entry /

Remove the T_EntryA

6) New Finished_TA

7) Put in Finished Map

TASK’S EXECUTION PROCESS (2)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

3) Broadcast/Hop DONE

message

4) Remove the T_EntryA

5) Remove the RunA_Entry /

Remove the T_EntryA

6) New Finished_TA

7) Put in Finished Map

TASK’S EXECUTION PROCESS (2)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

3) Broadcast/Hop DONE

message

4) Remove the T_EntryA

5) Remove the RunA_Entry /

Remove the T_EntryA

6) New Finished_TA

7) Put in Finished Map

8) Wait T time

(*) – T is previously defined accordingly to the pre-definition of the system architecture and network environment

TASK’S EXECUTION PROCESS (2)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

3) Broadcast/Hop DONE

message

4) Remove the T_EntryA

5) Remove the RunA_Entry /

Remove the T_EntryA

6) New Finished_TA

7) Put in Finished Map

8) Wait T time

9) Remove the Finished_TA

(*) – T is previously defined accordingly to the pre-definition of the system architecture and network environment

TASK’S EXECUTION PROCESS (2)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

3) Broadcast/Hop DONE

message

4) Remove the T_EntryA

5) Remove the RunA_Entry /

Remove the T_EntryA

6) New Finished_TA

7) Put in Finished Map

8) Wait T time

9) Remove the Finished_TA

(*) – T is previously defined accordingly to the pre-definition of the system architecture and network environment

TASK’S EXECUTION PROCESS (2)

• The Task’s execution process of the Distributed Queue System Architecture have the following behavior:

STEPS/OPERATION

DESCRIPTION:

3) Broadcast/Hop DONE

message

4) Remove the T_EntryA

5) Remove the RunA_Entry /

Remove the T_EntryA

6) New Finished_TA

7) Put in Finished Map

8) Wait T time

9) Remove the Finished_TA

(*) – T is previously defined accordingly to the pre-definition of the system architecture and network environment

PROBLEMS WITH THIS SOLUTION?

• How all the communication it’s made by Broadcast/Hop messages and in

volatile environments, with the constant entrance and exit of Devices from the

range/neighborhood, can happen that some Broadcast/Hop messages will be

lost or some Devices not will receive always all the messages;

• In some cases, it’s possible that a Device can receive a message about an

unknown Task, locally;

• Also, can happen that a Device receives messages by a different order that

the one that was to be supposed;

FAILED RESOLUTION SERVICE

• When a Device starts to execute locally a Task, sends periodically Broadcast/Hop RUNNING

messages (Heartbeats);

• If the other Devices remain a T time without receiving that RUNNING messages (Heartbeats),

will assume that the execution of that Task by its Host Device failed for some reason (e.g. : the

Device’s system failed, the Device leaves the network/range, etc.);

• In that case, the Task that is allocated in the Devices’ Running Map, will be removed from it

and allocated again in the Running Queue. The information about that Task will be also

updated;

• A Device that detects this situation, sends a Broadcast/Hop FAILED message to the other

Devices in the network/range;

DOYOUKNOWTHISELEMENT/
TAKEMYELEMENT/ALREADYFINISHEDELEMENT
(UNKNOWN TASKS) (1)

• When a Device receives a message about a Task that doesn’t know, locally, sends a

Broadcast/Hop DOYOUKNOWTHISELEMENT to the other Devices in the

network/range, asking for the data and information of that unknown Task;

• When a Device receives a DOYOUKNOWTHISELEMENT message, verifies if knows

that Task locally, and if it’s known, do the following:

• Generates random number T, between a certain interval and waits T time;

• During T time, verify if some another Device answer for the same situation and only answer

for it, if no other Device answer too for it, inside the T time window. This procedure allows to

avoid bottleneck situations in the network/range;

DOYOUKNOWTHISELEMENT/
TAKEMYELEMENT/ALREADYFINISHEDELEMENT
(UNKNOWN TASKS) (2)

• A Device can answer to the DOYOUKNOWTHISELEMENT messages received by two

ways:

• TAKEMYELEMENT – When the Element/Task that, it was being asked for, isn’t executed yet.

And in that situation, the Device that receives the message, sends all the data and information

about that Element/Task;

• ALREADYFINISHEDELEMENT – When the Element/Task that, it was being asked for, was

already executed and finished its execution. And in that situation, the Device that receives the

DOYOUKNOWTHISELEMENT message, sends only a Broadcast/Hop message informing that

Element/Task, was already executed, for the Device can update the information about it;

DOYOUKNOWTHISELEMENT - STRATEGIES USED

• Was adopted some strategies, for the situations that, a Device receives a

message about a Task that doesn’t know locally:

• ALWAYSWANTTHISELEMENT – A Device with this strategy, when receives a message

about an unknown Task, ALWAYS ask the other Devices, for the data and information of

it;

• DEPENDSONDEVICESNUMWANTTHISELEMENT - A Device with this strategy, when

receives a message about an unknown Task, as the other Devices, for the data and

information of it, only if, exists a certain minimum number of Devices in the

network/range;

• NEVERWANTTHISELEMENT – A Device with this strategy, when receives a message about

an unknown Task, NEVER ask the other Devices, for the data and information of it;

EVALUATION – SOME EXPERIMENTAL RESULTS (1)
(4 DEVICES WITH 128 ELEMENTS (TASKS), 1 DEVICE ENQUEUEING ALL ELEMENTS, WITHOUT PACKETS LOSS) (*)

(*) – Experimental results still with some Bugs

EVALUATION – SOME EXPERIMENTAL RESULTS (2)
(8 DEVICES WITH 128 ELEMENTS (TASKS), 4 DEVICES ENQUEUEING 32 ELEMENTS EACH ONE, WITHOUT PACKETS LOSS)

(*) – Experimental results still with some Bugs

